
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau

Lecture Notes 4 - Testing

Previous Lecture
Continue with XP
No Silver Bullet
Testing

Lecture Notes 4 2

Quiz #1 Today
Write in Pen if you want it to be
regraded

Lecture Notes 4 3

2

Today’s Lecture

More on Testing
● Static Analysis

◘Code Walkthroughs / Inspections

Lecture Notes 4 4

◘Code Walkthroughs / Inspections
● Formal Verification
●Dynamic Testing

Typical Testing Process

Oracle

Test

Subset of
Input

Expected
Output

Lecture Notes 4 5

Program /
Spec

Test
Strategy

Program /
Spec

Compare
Input Results

Subset of
Input

Actual
Output

Different Levels of Testing

System Testing
● Defined at Requirements -> Run after integration

testing
Integration Testing
● Defined at Design -> Run after Unit Testing

Lecture Notes 4 6

g g
Unit Testing
● Defined at Implementation -> Run after

Implementation of each unit
Regression Testing (testing after Change)
● Defined throughout the process -> Run after

modifcations

3

V-Model of Development & Testing
(the big picture)

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Lecture Notes 4 7

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

Software Testing
Exercising a system [component]
● on some predetermined input data
● capturing the behavior and output data
● comparing with test oracle
● for the purposes of

◘ identifying inconsistencies
◘ verifying consistency between actual results and

Lecture Notes 4 8

◘ verifying consistency between actual results and
specification

• to provide confidence in consistency with requirements and
measurable qualities

• to demonstrate subjective qualities

◘ validating against user needs
Limitations
● only as good as the test data selected
● subject to capabilities of test oracle

Goals of Testing
Reveal failures/faults/errors
Locate failures/faults/errors
Show system correctness
Improve confidence that the system
performs as specified (verification)

Lecture Notes 4 9

p p ()
Improve confidence that the system
performs as desired (validation)
Desired Qualities:
● Accurate
●Complete / thorough
●Repeatable
● Systematic

4

Motivation
People are not perfect
● We make errors in design and code
● Goal of testing: given some code, uncover as

many errors are possible
I t t d i ti it

Lecture Notes 4 10

Important and expensive activity
●Not unusual to spend 30-40% of total project

effort on testing

The Purpose of Testing
Design and coding are creative. but…

Testing is Destructive
● The primary goal is to “break” the software

Very often the same person does

Lecture Notes 4 11

Very often the same person does
both coding and testing
● This is not ideal… why?
●Need “split personality”:

◘when you start testing, become paranoid and
malicious

● Surprisingly hard to do: people don’t like
finding out that they made mistakes

Static Analysis
Examine & analyze source code
Goal:
● Discovering anomalies and defects

May be used before implementation
● Execution is not Required

May be applied to any representation of

Lecture Notes 4 12

May be applied to any representation of
the system
● Requirements
● Design
● Test data, etc…

5

Static Analysis
Very effective technique for discovering errors

They reuse domain and programming
knowledge
● reviewers are likely to have seen the types of error

that commonly arise

Lecture Notes 4 13

that commonly arise

Examples:
● Code Reviews &
● Inspections

Code Reviews (“Walk-throughs”)

Developer presents the code to a small group of
colleagues
● Developer describes software
● Developer describes how it works

◘ “Walks through the code”
● Free-form commentary/questioning by colleagues

Lecture Notes 4 14

● Free form commentary/questioning by colleagues

Benefits
● Many eyes, many minds
● Effective

Drawbacks
● Can lead to problems between developer and colleagues

Inspections
Small Team
● Author (Programmer)

◘ Silent observer
◘ Knows the code too well – might introduce bias

● Reader
◘ Presents the code

Lecture Notes 4 15

ese s e code
◘ May have 1 or 2

● Tester
◘ Reviews the code “Testing point of view”
◘ May have 1 or 2

● Moderator
◘ Conducts the inspection
◘ Motivates other participants
◘ Not directly involved with the product being inspected
◘ Keeps the team focused and together

6

Inspection Process

Planning

Overview

Lecture Notes 4 16

Individual
Prep

Inspection

Rework

Re-Inspect

Pre-Inspection Stages
Planning
● Select the team
●Organize when and where
● Ensure code and spec are complete

Overview

Lecture Notes 4 17

Overview
● Present general description of the material

to be inspected
Individual preparation
● Each member inspects the code and the

spec

Program Inspection
Should be short
Exclusively focused on defects,
anomalies, & non-compliance with
standards
Should not recommend changes or

t ti

Lecture Notes 4 18

suggest corrections
Paraphrase code a few lines at a
time
● Express meaning at a higher level of

abstraction
Code is analyzed using a checklist

7

Code Checklist
Wrong use of data
● Variables not initialized
● Array index out of bounds
● Dangling pointers

Lecture Notes 4 19

Faults in declaration / use of variables
● Duplicate use of variable names

Faults in computations
● Div by 0
● Type mismatch of variables

Code Checklist (2)
Faults in relational expressions
● Incorrect operator use (> instead of >)

Faults in Control Flow
● Infinite loops
● Off by 1 errors

Lecture Notes 4 20

O by e o s

Faults in Interfaces
● Incorrect number of parameters
● Passing the wrong type
● Inconsistent use of global variables

Rework & Re-inspection
Rework
● Author corrects code

Re-inspection

Lecture Notes 4 21

●Can be done by team or moderator
●Can either check for new problems that may

have arisen
●Can verify errors were corrected

8

Length of Inspection
Can cover up to 500 statements per
hour
●Depending on experience of team
●Usually more like 125/hr

Lecture Notes 4 22

Should not go for more than 2 hours

Should be done frequently

Inspections
Cons:
●Can be too shallow
● Programmers can be defensive

◘Evaluations of the programmer should not be
determined by reviews

Lecture Notes 4 23

determined by reviews
● Team may have insufficient knowledge of the

domain

Inspections and Testing
Inspections and testing are
complementary and not opposing
verification techniques
Both should be used during the V & V
process
Inspections can check conformance with

Lecture Notes 4 24

Inspections can check conformance with
a specification
● Can’t check conformance with the customer’s

real requirements
● Cannot validate dynamic behaviour

Inspections cannot check non-functional
characteristics such as performance,
usability, etc.

9

Tools for Static Analysis
Scan source text & detect possible faults /
anomalies
● Look for possible erroneous situations such as:

◘ Unused variables
◘ Undeclared variables

Lecture Notes 4 25

◘ Undeclared variables
◘ Unreachable code
◘ Variables used before initialization
◘ Parameter type mismatches
◘ Parameter number mismatches
◘ Uncalled functions or procedures
◘ Non-usage of function results
◘ Possible array bound violations
◘ Misuse of pointers

Take a break!
Stretch, Relax
Get some water, Use the restroom
Get to know your classmates…
Etc…..

When we return…

No Silver Bullet
Testing

Lecture Notes 3 26

Before the Break
Testing
●Static Analysis

◘Code Walkthroughs
◘Inspections

Lecture Notes 4 27

10

Today’s Lecture

More on Testing
● Static Analysis
● Formal Verification

Lecture Notes 4 28

● Formal Verification
●Coverage-Based Testing

Verification & Validation (revisited)

Verification
“Are we building the product right?” (Boehm)
● The Software should conform to its specification
● testing, reviews, walk-throughs, inspections
● internal consistency; consistency with previous

step

Lecture Notes 4 29

step

Validation
“Are we building the right product?”
● The software should do what the user really

requires
● ascertaining software meets customer’s intent

Quality Assurance : 5 Problems
#1 : Eliciting the Customer’s Intent

●Getting the Specs to meet the “real needs”

#2 : QA is inherently difficult

Lecture Notes 4 30

● Systems can be complex making QA difficult
to perform
◘Air Traffic Control stringent performance
◘Medical Diagnosis System Complex processing

11

Quality Assurance : 5 Problems
#3 : Management Aspects

● Who does what testing?
◘ Are developers involved?

● How are bugs handled?
● What is the reward structure?

Lecture Notes 4 31

#4 : QA Team vs. Developers
● QA lays out the rules
● Uncovers faults

◘ “image of competition”
● Viewed by Developers as Cumbersome

◘ “let me just code”

#5 : Can’t test exhaustively

How QA would like the world to be

Design, in formal notation

Complete formal specs
of problem to be solved

Correctness-preserving transformation

C i f i

Lecture Notes 4 32

Executable machine code

Execution on verified hardware

Code, in verifiable language

Correctness-preserving transformation

Correctness-preserving transformation

Correctness-preserving transformation

… but in reality

Design, in mixed notation

Mixture of formal and
informal specifications

Manual transformation

M l f i

Lecture Notes 4 33

Pentium machine code

Execution on commercial hardware

Code, in C++, Ada, Java, …

Manual transformation

Compilation by commercial compiler

Commercial firmware

12

Unit Tests
Developer tests the code just produced
● Needs to ensure that the code functions properly before

releasing it to the other developers

Benefits
● Knows the code best
● Has easy access to the code

D b k

Lecture Notes 4 34

Drawbacks
● Bias

◘ “I trust my code”
◘ “I always write correct code”

● Blind spots

Possible Solutions:
● Outside Testers
● Walkthroughs / Inspections

Formal Verification

Techniques for proving consistency
between two software descriptions
● to prove consistency of specification
● to prove correctness of implementation

Lecture Notes 4 35

● to prove correctness of implementation

Correctness
Correct with respect to the specification

Requirements
Specification

User Needs

Formal Requirements

analyze properties
of requirements

informally vaidate
consistency between
needs and requirements

informally verify
consistency between
formal and informal requirements

Verification with Formal Specs

Lecture Notes 4 36

q
Specification

Architectural
Specification

Formal Module
Specifications

System Software
Implementation

analyze properties
of modules

verify consistency
between specifications

verify consistency
between specification
and implementation

NOTE: may be multiple
levels of specification
and appropriate verification
at any stage analyze properties

of module interfaces

13

Formal Verification / Validation
Some shortcomings
● does not show other qualities

◘ Performace, usability, etc..

● May not scale up
● only informal techniques for validating against user

d

Lecture Notes 4 37

needs
● subject to assumptions of proof system
● only as good as formal specification
● Not trivial tedious
● Not always cost effective

Generally used on a part of the system
Example: Mathematically Based Verification

Mathematically Based Verification

Must have formal specifications
● Notation must be consistent with mathematical

verification techniques

The programming lang. must have formal
semantics

Lecture Notes 4 38

semantics

This is an intensive process but…
● Can verify correctness

Generally,
● Not cost effective for large systems

Tools for Mathematical Verification
Can it be automated?
● Theorem provers

◘Assist in developing proofs
●Usually work with a subset of the program

N t l t l t t d

Lecture Notes 4 39

●Not completely automated

14

The problem with Testing
Can’t test exhaustively
● Not feasible to run all those test cases
● Not feasible to validate them once they are run

Want to verify software
Need to test

Lecture Notes 4 40

Need to decide on test cases

But,
no set of test cases guarantees absence of bugs,

So,

Testing Techniques
So,

We need to find a systematic approach to
selecting of test cases that will lead to:
● accurate,

Lecture Notes 4 41

,
● acceptably thorough,
● repeatable identification of errors, faults, and

failures?

Practical Issues
Purpose of testing
● Fault detection
●High assurance of reliability
● Performance/stress/load
●Regression testing of new versions

Lecture Notes 4 42

Conflicting considerations
● safety, liability, risk, customer satisfaction,

resources, schedule, market windows and
share

Test Selection is a sampling
technique
● choose a finite set from an infinite domain

15

Fundamental Testing Questions
Test Criteria: What should we test?
Test Oracle: Is the test correct?
Test Adequacy: How much is enough?
Test Process: Is our testing effective?

Lecture Notes 4 43

How to make the most of limited resources?

g

Test Criteria
Testing must select a subset of test cases
that are likely to reveal failures

Test Criteria provide the guidelines, rules,
strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Lecture Notes 4 44

● requirements on test data

Equivalence partitioning is the typical
approach
● a test of any value in a given class is equivalent to a

test of any other value in that class
● if a test case in a class reveals a failure, then any

other test case in that class should reveal the failure
● some approaches limit conclusions to some chosen

class of errors and/or failures

Test Oracles
Where does “expected output” come
from?

A test oracle is a mechanism for
deciding whether a test case execution

failed or succeeded

Lecture Notes 4 45

Critical to testing
Difficult to create systematically
Typically done with a lot of guesswork
●Typically relies on humans
● great dependence on the intuition of testers

Formal specifications make it possible to
automate oracles

16

What Does an Oracle Do?
Your test shows cos(0.5) =
0.8775825619
You have to decide whether this
answer is correct?

Lecture Notes 4 46

You need an oracle
●Draw a triangle and measure the sides
● Look up cosine of 0.5 in a book
●Compute the value using Taylor series

expansion
●Check the answer with your desk

calculator

Test Adequacy
Coverage metrics
● when sufficient percentage of the program

structure has been exercised
Empirical assurance
● when failures/test curve flatten out

Lecture Notes 4 47

Error seeding
● percentage of seeded faults found is proportional

to the percentage of real faults found
Independent testing
● faults found in common are representative of total

population of faults

